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Moscow, Russia
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Abstract. The conserved densities of hydrodynamic-type systems in Riemann invariants satisfy
a system of linear second-order partial differential equations. For linear systems of this
type Darboux introduced Laplace transformations, generalizing the classical transformations
in the scalar case. It is demonstrated that Laplace transformations can be pulled back to the
transformations of the corresponding hydrodynamic-type systems. We discuss periodic Laplace
sequences of 2× 2 hydrodynamic-type systems with emphasis on the simplest nontrivial case
of period 2.

For 3× 3 systems in Riemann invariants a complete discription of closed quadruples is
proposed. They turn out to be related to a special quadratic reduction of the(2+1)-dimensional 3-
wave system which can be reduced to a triple of pairwise commuting Monge–Ampere equations.

In terms of the Lame and rotation coefficients Laplace transformations have a natural
interpretation as the symmetries of the Dirac operator, associated with the(2+ 1)-dimensional
n-wave system. The 2-component Laplace transformations can also be interpreted as the
symmetries of the(2+ 1)-dimensional integrable equations of Davey–Stewartson type.

Laplace transformations of hydrodynamic-type systems originate from a canonical geometric
correspondence between systems of conservation laws and line congruences in projective space.

1. Introduction and the main results

Let us consider a 2-component system of hydrodynamic type in Riemann invariants

R1
t = λ1(R)R1

x

R2
t = λ2(R)R2

x.
(1)

Any system (1) possesses infinitely many conservation laws of hydrodynamic type
∫
u(R) dx

with the conserved densitiesu(R) satisfying linear equation of the second order

∂1∂2u = a∂1u+ b∂2u (2)

where

a = ∂2λ
1

λ2− λ1
b = ∂1λ

2

λ1− λ2

∂i = ∂
∂Ri

. Let alsof be the flux, corresponding to the densityu, that is,f satisfies the
equationut = fx or, equivalently,

∂if = λi∂iu for any i = 1, 2
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which are compatible due to (2).
Applying to equation (2) the Laplace transformation

U = u− ∂1u

b

we arrive at the similar equation with respect toU :

∂1∂2U = A∂1U + B∂2U

where

A = a − ∂2 ln b B = b + ∂1 lnA. (3)

(the inverse Laplace transformationU = u − ∂2u
a

is considered analogously). It turns out
that Laplace transformations can be pulled back to the transformations of the corresponding
hydrodynamic-type systems. Let us introduce the system

R1
t = 31(R)R1

x

R2
t = 32(R)R2

x

(4)

where the new characteristic velocities31,32 are connected withλ1, λ2 by the formulae

31 = λ2

32 = λ2− b∂2λ
2

∂2b − ab = λ
2− 1

∂1∂2λ2

∂1λ2∂2λ2 + 1
λ1−λ2

.
(5)

Theorem 1.(1) The conserved densitiesU of system (4) are given by the formula

U = u− ∂1u

b

whereu are conserved densities of system (1).
(2) The characteristic velocitiesW 1,W 2 of commuting flows of system (4) are given

by the formulae

W 1 = w2

W 2 = w2− b∂2w
2

∂2b − ab
wherew1 andw2 are the characteristic velocities of commuting flows of system (1), i.e.
solutions of the linear system (see [1])

∂2w
1

w2− w1
= a ∂1w

2

w1− w2
= b.

(3) The fluxF of the conserved densityU is given by the formula

F = f − λ2∂1u

b

wheref is the flux ofu.

The proof follows from the identities

A = ∂23
1

32−31
B = ∂13

2

31−32

∂2W
1

W 2−W 1
= A ∂1W

2

W 1−W 2
= B
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and

∂iF = 3i∂iU i = 1, 2

which can be checked by a direct calculation. It is natural to call system (4) the Laplace
transformation of system (1). Evidently Laplace transformations preserve the ‘integrability’:
the conserved densities and commuting flows of system (1) are automatically transformed
into the conserved densities and commuting flows of system (4) according to the formulae
of theorem 1. In particular, solutions of system (1), specified by the hodograph formula
(see [1])

w1 = x + λ1t w2 = x + λ2t

are transformed into the solutions

W 1 = x +31t W 2 = x +32t

of system (4).
The inverse Laplace transformationU = u − ∂2u

a
corresponds to the interchange of

indices 1 and 2 in formulae (5). Some further properties of Laplace transformations in the
2-component case are discussed in section 2.

Following [4] in section 5 we give the interpretation of Laplace transformation (5) as a
discrete symmetry of the integrable equations of Davey–Stewartson type.

Formula (5) results from the geometric construction of paper [16], relating systems of
conservation laws with line congruences in the projective space. This correspondence is
briefly discussed in section 6.

Laplace transformations can be generalized ton× n systems in Riemann invariants

Rit = λi(R)Rix (6)

namely, for any pair of indicesi 6= j we define transformationSij , mapping system (6) into
the new system

Rit = 3i(R)Rix (7)

with the characteristic velocities
3i = λj

3j = λj − aji∂jλ
j

∂jaji − aij aji
3k = λkaji − λjaki

aji − aki k 6= i, j

(8)

whereaji = ∂iλ
j

λi−λj .

Theorem 2.(1) The conserved densitiesU of system (7) are given by the formula

U = u− ∂iu
aji

whereu are conserved densities of system (6).
(2) The characteristic velocitiesWi of commuting flows of system (7) are given by the

formulae

Wi = wj

Wj = wj − aji∂jw
j

∂jaji − aij aji
Wk = wkaji − wjaki

aji − aki k 6= i, j
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wherewi are the characreristic velocities of commuting flows of system (6), i.e. solutions
of the linear system (see [1])

∂jw
i

wj − wi = aij i 6= j.
(3) The fluxF of the conserved densityU of system (7) is given by the formula

F = f − λj ∂iu
aji

wheref is the flux ofu.

We recall that the conserved densitiesu of system (6) satisfy an over-determined system
of linear second-order equations

∂i∂ju = aij ∂iu+ aji∂ju i 6= j (9)

with the compatibility conditions

∂kaij = aikakj + aij ajk − aij aik i 6= j 6= k 6= i
which we always assume to be satisfied. Systems (6), satisfying these compatibility
conditions, are called semi-Hamiltonian and can be integrated by the generalized hodograph
transform [1]. The formula

U = u− ∂iu
aji

defines Laplace transformationSij of linear system (9)—see Darboux [5, p 274]. As one
can verify directly,U satisfies the system

∂i∂jU = Aij ∂iU + Aji∂jU i 6= j
with the coefficientsA given by the formulae

Aij = aij − ∂j ln aji
Aji = aji + ∂i lnAij

Aik = ajk
(

1− aki
aji

)
Aki = aki + ∂i ln

(
1− aki

aji

)
Ajk = ajk + ∂k lnAij

Akj = akj + ∂j ln

(
1− aki

aji

)
Akl = akl + ∂l ln

(
1− aki

aji

)

(10)

wherek, l 6= i, j (compare with [13, 14]). The nonsymmetry of these expressions is due
to the distinguished role played by the indicesi and j in the definition of the Laplace
transformationSij . Laplace transformations preserve the semi-Hamiltonian property and
hence map integrable systems to integrable.

In the casen = 2 there is actually only one transformationS12 sinceS12 ◦ S21 = id.
Some further properties of transformationsSij are discussed in section 3, where we also

propose a complete description of quadruples of 3× 3 systems, which are closed under all
Laplace transformationsSij .

In section 4 formulae for Laplace transformations of the Lame and rotation coefficients
are presented.
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2. Laplace transformations of 2-component systems. Sequences of period 2

Iterating Laplace transformations according to formulae (5) we arrive at the infinite sequence
of systems with the characteristic velocities being consecutive solutions of the integrable
chain

∂1∂2λ
n

∂1λn∂2λn
= 1

λn − λn−1
+ 1

λn − λn+1
(11)

so that the Laplace transformation of the system with characteristic velocities(λn−1, λn) is
the system with characteristic velocities(λn, λn+1). In terms of the coefficients

an = ∂2λ
n

λn+1− λn bn = ∂1λ
n

λn−1− λn
chain (11) assumes the form

∂1a
n = an(bn+1− bn) ∂2b

n = bn(an−1− an)
and after substitution

qn = ln anbn = ln
∂2λ

n∂1λ
n

(λn+1− λn)(λn−1− λn)
reduces to the well known Toda chain

∂1∂2q
n = 2eq

n − eq
n+1 − eq

n−1
. (12)

Chain (11) recently appeared in [4] as a symmetry of the(2+ 1)-dimensional integrable
equations of Davey–Stewartson type—see section 5.

A number of interesting results in the theory of Laplace transformations have been
derived while studying periodic sequences. It was demonstrated in [3] that periodic
sequences are ultimately connected with the spectral theory of the two-dimensional
Schr̈odinger operator. It turns out that any periodic sequence of Laplace transformations
of second-order equations (2) can be pulled back to the periodic sequence of Laplace
transformations of the corresponding hydrodynamic-type systems. This pull-back is
governed by periodic reductions of chain (11).

Example. Let us consider a periodic sequence of Laplace transformations of period 2,
where equation (2) with coefficients(a, b) first transforms into equation (2) with coefficients
(A,B), and then back into(a, b). It follows from (3) thatAa = ϕ2(R

2), Bb = ϕ1(R
1),

where the functionsϕi can be reduced to±1 by a change to the new Riemann invariants,
so that we can assumeAa = ±1, Bb = ±1. In what follows we consider the caseA = 1

a
,

B = 1
b

so that our Laplace sequence can be schematically represented as follows

(a, b)→
(

1

a
,

1

b

)
→ (a, b). (13)

Moreover, the coefficientsa andb must obey the equations

∂2 ln b = a − 1

a
∂1 ln a = b − 1

b
(14)

which are equivalent to the sh-Gordon equation

∂1∂2ϕ = 4 shϕ

for ϕ = ln ab. The periodic pull-back, corresponding to sequence (13), is of the form

(λ1, λ2)→ (31,32)→ (λ1, λ2)
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where31 = λ2, 32 = λ1, as automatically follows from (5). Herea, b, λ1, λ2 are connected
by the formulae

∂2λ
1

λ2− λ1
= a ∂1λ

2

λ1− λ2
= b

∂2λ
2

λ1− λ2
= 1

a

∂1λ
1

λ2− λ1
= 1

b

(15)

which are compatible due to (14). One can show thatλ1, λ2 satisfy the second-order system

∂1∂2λ
1

∂1λ1∂2λ1
= 2

λ1− λ2

∂1∂2λ
2

∂1λ2∂2λ2
= 2

λ2− λ1

which is just a periodic reduction of chain (11) of period 2:λ3 = λ1, λ4 = λ2 and can be
obtained by varying the Lagrangian

L =
∫ ∫

∂1λ
1∂2λ

2

(λ1− λ2)2
dR1 dR2.

Formulae (15) describe the periodic pull-back of Laplace sequence of period 2. This
pull-back is defined uniquely up to transformationsλ1 → pλ1 + q, λ2 → pλ2 + q,
p, q = constant. Let us point out that applying Laplace transformations to commuting
flows with the characteristic velocitiesw1, w2, which do not satisfy the restrictions (15)
(although correspond to the samea, b), we will not return back after going round the cycle.

Remark. For any periodic sequence of Laplace transformations of period 2

(a, b)→
(

1

a
,

1

b

)
→ (a, b)

one can construct a nonperiodic pull-back of the form

(w1, w2)→ (w2, µw1)→ (µw1, µw2)

whereµ = constant. Herea, b,w1, w2 are connected by the formulae

∂2w
1

w2− w1
= a ∂1w

2

w1− w2
= b

∂2w
2

µw1− w2
= 1

a

µ∂1w
1

w2− µw1
= 1

b
.

(16)

The linear system (16) is compatible and manifests the spectral problem for equations (14)
with the spectral parameterµ. It follows from (16) that(λ1, λ2) are the components of the
wavefunction(w1, w2) at the pointµ = 1.

The situation with periodic sequences of an arbitrary periodn is completely analogous,
namely, for any periodic sequence of Laplace transformations of second-order equations
of period n there exists exactlyn-parameter family of periodic sequences of systems of
hydrodynamic type with the same period. In a similar way (considering nonperiodic pull-
backs) one can construct spectral problems, corresponding to periodic sequences of Laplace
transformations of an arbitrary periodn.

Let us now discuss another question, concerning Laplace sequences of period 2

(a, b)→
(

1

a
,

1

b

)
→ (a, b)

namely, the existence of periodic sequences of solutions. Applying two consecutive Laplace
transformations in the directionR1 to the initial solutionu of equation (2)

∂1∂2u = a∂1u+ b∂2u
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and keeping in mind the conditionsA = 1
a

, B = 1
b

(see the example), we obtain a new
solution

L̂1(u) = ∂2
1u−

(
∂1b

b
+ b + 1

b

)
∂1u+ u

which does not necessarily coincide withu. In this sense transformation̂L1 is a recursion
operator for equation (2). In a similar way one can construct another recursion operator

L̂2(u) = ∂2
2u−

(
∂2a

a
+ a + 1

a

)
∂2u+ u

generated by two consecutive Laplace transformations in the directionR2. It is an easy
exercise to show that in general there are no solutions of period 2, that is, solutions,
satisfying any of the equivalent conditionsL̂1(u) = u or L̂2(u) = u. So we will look for
solutions of period 4, which obviously can be characterized by the constraintL̂1(u) = L̂2(u)

or, equivalently,

∂2
1u =

(
∂1b

b
+ b + 1

b

)
∂1u+ p

∂2
2u =

(
∂2a

a
+ a + 1

a

)
∂2u+ p

(2′)

for appropriatep. Writing down the compatibility conditions of(2′) with (2) and keeping
in mind (14) we obtain the following equations forp:

∂1p = b

a
∂2u− ∂1u+ bp

∂2p = a

b
∂1u− ∂2u+ ap.

(2′′)

Moreover, the compatibility conditions of(2′′) are satisfied identically. Hence, any periodic
sequence of Laplace equations of period 2 possesses exactly three-dimensional space of
periodic solutions of period 4, which are described by an involutive system(2), (2′),
(2′′). Three linearly independent solutions of this system define a surfaceM2 in 3-
space, parametrized by coordinatesR1, R2. This coordinate net is conjugate due to (2)
and generates periodic Laplace sequence consisting of four surfacesM2→ M2

1 → M2
2 →

M2
3 → M2 in the standard differential-geometric sense—see e.g. [17] and references therein

for the properties of Laplace sequences of period 4. One can also show, that the second
quadratic forms of the surfaceM2 and its Laplace images have the special isothermic form
in the coordinatesR1, R2: they are proportional to(dR1)2+(dR2)2, so that all congruences,
generating this Laplace sequence, areW -congruences, and the corresponding conjugate nets
are the so-calledR-nets. Since the radius-vectors ofM2 andM2

2 satisfy one and the same
linear system(2), (2′), (2′′), these surfaces differ only by an affine transformation of the
3-space (although do not coincide). The same property holds forM2

1 and M2
3. These

considerations can be generalized to the case of arbitrary periodn as follows. Any periodic
equation (2) of an arbitrary periodn possesses(n− 1)-dimensional space of solutions with
the same periodn—see, e.g. [18].

Let us show that any system of hydrodynamic type, which satisfies equations (15) and
generates Laplace sequence of period 2

(λ1, λ2)→ (λ2, λ1)→ (λ1, λ2)
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possesses a unique conservative representation

u1
t = f 1

x

u2
t = f 2

x

of period 4. For that purpose we have to choose the densitiesu and the fluxesf in such a
way thatL̂1(u) = L̂2(u) and L̂1(f ) = L̂2(f ), where

L̂1(f ) = λ1∂2
1u−

(
λ1∂1b

b
+ λ1b + λ

2

b

)
∂1u+ f

L̂2(f ) = λ2∂2
2u−

(
λ2∂2a

b
+ λ2a + λ

1

a

)
∂2u+ f

according to the transformation law of the fluxes, see theorem 1. Finally, we obtain the
following system for the conserved densitiesu

∂1∂2u = a∂1u+ b∂2u

∂2
1u =

(
∂1b

b
+ b

)
∂1u− ∂2u

a

∂2
2u =

(
∂2a

a
+ a

)
∂2u− ∂1u

b

which can be obtained from(2), (2′), (2′′) by the reductionp = − ∂1u
b
− ∂2u

a
. This system

is compatible and defines a 2-parameter space of conserved densities, providing, together
with the corresponding fluxes, the unique conservative representation of period 4.

3. Laplace transformations ofn-component systems

Lemma. TransformationsSij satisfy the identities

Sij ◦ Sji = id

Sij = Sik ◦ Skj = Skj ◦ Sik k 6= i, j. (17)

The proof can be obtained by a direct calculation. The analogous identities are well known in
the theory ofn-conjugate coordinate systems—see, e.g. [5, p 275]. From (17) it immediately
follows that transformationsSij form a free Abelian group withn− 1 generators (one can
take for exampleS12, . . . , S1n as the generators).

In the language ofn-conjugate coordinate systems transformationsSij have been
discussed in [6–10], which partially duplicate the investigations of Darboux [5, pp 274–5].
The summary of these results can be found in [11]. Higher-dimensional Laplace invariants
and terminating Laplace sequences have recently been investigated in [13, 14], see also
[20, 21]. Let us also point to [12], where the method of factorization has been successfully
applied to construct Laplace transformations and Laplace invariants of multidimensional
matrix differential operators of the first order.

It looks promising to continue the investigation of transformationsSij , in particular:
• investigate finite families of hydrodynamic-type systems, which are closed under all

Laplace transformationsSij (analogues of closed Laplace sequences in the casen = 2). It
looks likely, that these systems should enjoy the property of certain ‘extra’ integrability;
• study the behaviour of Hamiltonian structures under the Laplace transformationsSij .

We emphasize that local Hamiltonian structures of Dubrovin–Novikov type [2] are not
preserved under the Laplace transformations.
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Figure 1.

Let us now give a description of quadruples of 3× 3 hydrodynamic-type systems,
which are closed under all Laplace transformations. Let the characteristic velocities of the
systems6, 61, 62, 63 be respectively(λ1, λ2, λ3), (λ4, λ3, λ2), (λ3, λ4, λ1), (λ2, λ1, λ4)—
see figure 1.

The marked lines joining pairs of systems on the picture indicate, for instance, that
system63 can be obtained from6 by the Laplace transformationsS12 andS21 (vice versa,
system6 can be obtained from63 by transformationsS12 andS21). The lines are marked
in accordance with the identities (17). As far as in our constructionS2

ij = id for any pair of
indicesi, j , the quadruples of systems under consideration are complete analogues of closed
Laplace sequences of period 2. Formulae (8) result in the complicated over-determined
system for the characteristic velocitiesλ1–λ4:

∂1∂2λ
1

∂1λ1∂2λ1
= 2

λ1− λ2

∂1∂2λ
2

∂1λ2∂2λ2
= 2

λ2− λ1

∂1∂3λ
1

∂1λ1∂3λ1
= 2

λ1− λ3

∂1∂3λ
3

∂1λ3∂3λ3
= 2

λ3− λ1

∂2∂3λ
2

∂2λ2∂3λ2
= 2

λ2− λ3

∂2∂3λ
3

∂2λ3∂3λ3
= 2

λ3− λ2

∂1∂2λ
3

∂1λ3∂2λ3
= 2

λ3− λ4

∂1∂2λ
4

∂1λ4∂2λ4
= 2

λ4− λ3

∂1∂3λ
2

∂1λ2∂3λ2
= 2

λ2− λ4

∂1∂3λ
4

∂1λ4∂3λ4
= 2

λ4− λ2

∂2∂3λ
1

∂2λ1∂3λ1
= 2

λ1− λ4

∂2∂3λ
4

∂2λ4∂3λ4
= 2

λ4− λ1

(18)

and

∂1λ
2λ

4− λ3

λ1− λ2
= ∂1λ

3λ
4− λ2

λ1− λ3
∂1λ

1λ
2− λ4

λ3− λ1
= ∂1λ

4λ
2− λ1

λ3− λ4

∂2λ
1λ

4− λ3

λ2− λ1
= ∂2λ

3λ
4− λ1

λ2− λ3
∂2λ

2λ
1− λ4

λ3− λ2
= ∂2λ

4λ
1− λ2

λ3− λ4

∂3λ
1λ

4− λ2

λ3− λ1
= ∂3λ

2λ
4− λ1

λ3− λ2
∂3λ

3λ
1− λ4

λ2− λ3
= ∂3λ

4λ
1− λ3

λ2− λ4
.

(19)
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It follows from (19) that the cross ratio of four characteristic velocitiesλ1–λ4 is constant:

(λ1− λ2)(λ3− λ4)

(λ1− λ4)(λ3− λ2)
= µ = constant.

Excludingλ4 one can rewrite equations (18), (19) in a simplified form

∂1∂2λ
1

∂1λ1∂2λ1
= 2

λ1− λ2

∂1∂2λ
2

∂1λ2∂2λ2
= 2

λ2− λ1

∂1∂3λ
1

∂1λ1∂3λ1
= 2

λ1− λ3

∂1∂3λ
3

∂1λ3∂3λ3
= 2

λ3− λ1

∂2∂3λ
2

∂2λ2∂3λ2
= 2

λ2− λ3

∂2∂3λ
3

∂2λ3∂3λ3
= 2

λ3− λ2

(20)

and

µ(λ1− λ3)2∂1λ
2 = (µ− 1)(λ1− λ2)2∂1λ

3

µ(λ2− λ3)2∂2λ
1 = (λ1− λ2)2∂2λ

3

(1− µ)(λ2− λ3)2∂3λ
1 = (λ1− λ3)2∂3λ

2

(21)

so that (18) and (19) are equivalent to (20) and (21). It follows from (20), that

∂1λ
1∂1λ

2 = (λ1− λ2)2ϕ13 ∂2λ
1∂2λ

2 = (λ1− λ2)2ϕ23

∂1λ
1∂1λ

3 = (λ1− λ3)2η12 ∂3λ
1∂3λ

3 = (λ1− λ3)2η23

∂2λ
2∂2λ

3 = (λ2− λ3)2s12 ∂3λ
2∂3λ

3 = (λ2− λ3)2s13

(22)

where ϕij (R
i, Rj ), ηij (R

i, Rj ), sij (R
i, Rj ) are arbitrary functions of the specified

arguments. Using (21) one immediately arrives at the following relations between
ϕij , ηij , sij :

µϕ13 = (µ− 1)η12 µϕ23 = s12 (1− µ)η23 = s13

so that

ϕ13 = (µ− 1)ϕ1(R
1) ϕ23 = ϕ2(R

2)

η12 = µϕ1(R
1) η23 = ϕ3(R

3)

s12 = µϕ2(R
2) s13 = (1− µ)ϕ3(R

3)

whereϕi(Ri) are arbitrary functions, which can be reduced to±1 by the appropriate change
of Riemann invariants. In what follows we consider the caseϕi = 1, so that equations (22)
assume the form

∂1λ
1∂1λ

2 = (µ− 1)(λ1− λ2)2 ∂2λ
1∂2λ

2 = (λ1− λ2)2

∂1λ
1∂1λ

3 = µ(λ1− λ3)2 ∂3λ
1∂3λ

3 = (λ1− λ3)2

∂2λ
2∂2λ

3 = µ(λ2− λ3)2 ∂3λ
2∂3λ

3 = (1− µ)(λ2− λ3)2.

(23)

We emphasize that (20) and (21) are equivalent to (23). Let us demonstrate that
equations (23) are equivalent to a special quadratic reduction of the(2+ 1)-dimensional
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3-wave system. For that purpose we introduce differential 1-forms

ω1 =
√

µ

µ− 1

λ1− λ3

(λ1− λ2)(λ2− λ3)
dλ2−

√
µ− 1

µ

λ1− λ2

(λ1− λ3)(λ2− λ3)
dλ3

ω2 = √µ λ2− λ3

(λ1− λ2)(λ1− λ3)
dλ1− 1√

µ

λ1− λ2

(λ1− λ3)(λ2− λ3)
dλ3

ω3 = −
√
µ− 1

λ2− λ3

(λ1− λ2)(λ1− λ3)
dλ1− 1√

µ− 1

λ1− λ3

(λ1− λ2)(λ2− λ3)
dλ2

(24)

which are chosen in such a way that equations (21) become just

ω1 ∧ dR2 ∧ dR3 = 0

ω2 ∧ dR1 ∧ dR3 = 0

ω3 ∧ dR1 ∧ dR2 = 0.

(25)

Moreover, the formsωi satisfy the structure equations of the Lie groupSO(2, 1):

dω1 = ω2 ∧ ω3 dω2 = ω3 ∧ ω1 dω3 = ω2 ∧ ω1. (26)

Let us introduce the coefficientsβij by the formulae

ω1 = β32 dR2− β23 dR3

ω2 = β13 dR3− β31 dR1

ω3 = β12 dR2− β21 dR1

(27)

(the validity of such representation is due to (25)). Coefficientsβij satisfy the nonlinear
system, which is well known in the theory of 3-orthogonal coordinates. This system results
from the substitution of (27) into the structure equations (26):

∂1β23 = −β21β13 ∂1β32 = −β31β12

∂2β13 = −β12β23 ∂2β31 = −β32β21

∂3β12 = β13β32 ∂3β21 = β23β31

(28)

and

∂1β12+ ∂2β21+ β31β32 = 0

∂1β13+ ∂3β31− β21β23 = 0

∂2β23+ ∂3β32− β12β13 = 0.

(29)

The transformation fromλi to βij is just the differential substitution of the first order. The
explicit expressions forβij can be obtained by comparing (27) with (24):

β32 =
√

µ

µ− 1

λ1− λ3

(λ1− λ2)(λ2− λ3)
∂2λ

2−
√
µ− 1

µ

λ1− λ2

(λ1− λ3)(λ2− λ3)
∂2λ

3

β23 = −
√

µ

µ− 1

λ1− λ3

(λ1− λ2)(λ2− λ3)
∂3λ

2+
√
µ− 1

µ

λ1− λ2

(λ1− λ3)(λ2− λ3)
∂3λ

3

β13 = √µ λ2− λ3

(λ1− λ2)(λ1− λ3)
∂3λ

1− 1√
µ

λ1− λ2

(λ1− λ3)(λ2− λ3)
∂3λ

3

β31 = −√µ λ2− λ3

(λ1− λ2)(λ1− λ3)
∂1λ

1+ 1√
µ

λ1− λ2

(λ1− λ3)(λ2− λ3)
∂1λ

3
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β12 = −
√
µ− 1

λ2− λ3

(λ1− λ2)(λ1− λ3)
∂2λ

1− 1√
µ− 1

λ1− λ3

(λ1− λ2)(λ2− λ3)
∂2λ

2

β21 =
√
µ− 1

λ2− λ3

(λ1− λ2)(λ1− λ3)
∂1λ

1+ 1√
µ− 1

λ1− λ3

(λ1− λ2)(λ2− λ3)
∂1λ

2.

Moreover, equations (23) impose the following quadratic reduction on the coefficientsβij :

β2
32

µ
− β2

12 = −4
β2

23

µ− 1
− β2

13 = 4
β2

21

µ− 1
− β

2
31

µ
= 4. (30)

Let us point out that equations (28) are just(2 + 1)-dimensional 3-wave systems,
corresponding to the spectral problem

∂2H1 = −β21H2 ∂3H1 = −β31H3

∂1H2 = −β12H1 ∂3H2 = −β32H3

∂1H3 = β13H1 ∂2H3 = β23H2.

In order to comply with reduction (30) we introduce the parametrization

β32 = 2
√
µ shu β12 = 2 chu

β23 = 2
√
µ− 1 chv β13 = 2 shv

β21 = 2
√
µ− 1 chw β31 = 2

√
µ shw

so that equations (28) become

∂1u = −2 shw ∂3u = 2
√
µ shv

∂1v = −2 chw ∂2v = −2
√
µ− 1 chu

∂2w = −2
√
µ− 1 shu ∂3w = 2

√
µ chv

(31)

(we point out that after this substitution equations (29) are satisfied identically). After the
appropriate rescaling of Riemann invariants equations (31) assume the simple form

∂1u = shw ∂3u = shv

∂1v = chw ∂2v = chu

∂2w = shu ∂3w = chv.

Expressingv andw as follows

v = arcsh∂3u w = arcsh∂1u

one can rewrite this system in the form of three pairwise commuting Monge–Ampere
equations

∂1∂2u = shu
√

1+ (∂1u)2

∂3∂2u = chu
√

1+ (∂3u)2

∂1∂3u =
√

1+ (∂1u)2
√

1+ (∂3u)2

(as far as the authors know the problem of classification of commuting Monge–Ampere
equations has not been addressed before). It looks promising to continue the investigation
of finite families of n × n hydrodynamic-type systems in Riemann invariants, which are
closed under all Laplace transformationsSij . It is natural to restrict oneself to the case
when Skij = id for somek > 2. Examples discussed above support the evidence that the
problem is nontrivial even in the simplest cases(n = 2, k = 2) and (n = 3, k = 2). The
equations for the characteristic velocities of the corresponding hydrodynamic-type systems
should reduce to appropriate integrable reductions of the(2+1)-dimensionaln-wave system

∂kβij = βikβkj .
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4. Laplace transformations of the Lame and rotation coefficients

In the 2-component case the Lame coefficientsh1, h2 are defined by the formulae

∂2 lnh1 = a ∂1 lnh2 = b. (32)

It turns out that Laplace transformation (3) can be pulled back to the transformation of the
Lame coefficients: the transformed Lame coefficientsH1, H2 are given by the formulae

H1 = h1

b
= h1h2

∂1h2

H2 = h2A = h2∂2 lnH1

(33)

(see Darboux [5]), so that

∂2 lnH1 = A ∂1 lnH2 = B.
In terms of the chain

∂1 lnhn2 =
hn1

hn+1
1

∂2 lnhn1 =
hn2

hn−1
2

(34)

transformation (33) reduces to the shift

(hn1, h
n
2)→ (hn+1

1 , hn+1
2 ).

Formulae (33) can also be rewritten in terms of the rotation coefficients

β12 = ∂1h2

h1
β21 = ∂2h1

h2
(35)

namely, the transformed rotation coefficientsβ̃12, β̃21 are the following:

β̃12 = ∂1H2

H1
= β12(β12β21− ∂1∂2 lnβ12)

β̃21 = ∂2H1

H2
= 1

β12
.

(36)

The generalization to then-component case is straightforward: under the transformation
Sij the Lame coefficientshi defined by the formula

∂j lnhi = aij
transform intoHi as follows

Hi = hi

aji
= hihj

∂ihj

Hj = hjAij = hj∂j lnHi

Hk = hk
(

1− aki
aji

)
= hk − ∂ihk

∂ihj
hj k 6= i, j.

(37)

Indeed one can directly verify that

∂j lnHi = Aij
whereAij are specified by (10).
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In a similar way, the rotation coefficients

βij = ∂ihj

hi

transform intoβ̃ij as follows

β̃ij = βij (βijβji − ∂i∂j lnβij )

β̃ji = 1

βij

β̃ik = −βij ∂i βik
βij

β̃ki = βkj

βij

β̃jk = −βik
βij

β̃kj = βij ∂j βkj
βij

β̃kl = βkl − βkjβil
βij

(38)

wherek, l 6= i, j (compare with [19, p 12]). In order to check that indeed

β̃ij = ∂iHj

Hi

it is convenient to use the following equivalent representation for the transformed rotation
coefficientsHi :

Hi = hj

βij

Hj = ∂jhj − hj∂j lnβij

Hk = hk − βik
βij
hj k 6= i, j

and to keep in mind the equations

∂kβij = βikβkj i 6= j 6= k (39)

satisfied by the rotation coefficients of an arbitrary semi-Hamiltonian system. It should
be emphasized that the transformed rotation coefficients satisfy the same equations (39)
and hence transformationsSij written in the form (38) are just discrete symmetries of the
(2+ 1)-dimensionaln-wave system (39). The role of these transformations in the theory
of n-wave system deserves a special investigation. Basically transformationsSij preserve
neither the Egorov reduction

βij = βji
nor the zero curvature reduction

∂iβij + ∂jβji +
∑
k 6=i,j

βkiβkj = 0

of the n-wave system (39).
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Remark. A way to generalize transformationsSij written in the form (37), (38) is to allow
the rescaling

Hs → µsHs β̃sl → µl

µs
β̃sl µs = constant

where generically the scaling factorsµs depend onSij . One can always chooseµs in such
a way as to preserve the basic identities (17). The main purpose for introducing the scaling
factors is the construction of solutions of then-wave system (39) for which, say,S2

ij = id
(analogues of periodic sequences of period 2). For instance, one can show that whenn > 3
there are no nontrivial solutions of (39) satisfyingS2

ij = id if Sij are as in (38). However,
they do exist if we rescaleSij appropriately.

5. Laplace transformations as symmetries of the Davey–Stewartson-type equations

It should be noted that Laplace transformation (5) for the characteristic velocities

31 = λ2

32 = λ2− 1
∂1∂2λ2

∂1λ2∂2λ2 + 1
λ1−λ2

arises naturally as the symmetry of the(2+ 1)-dimensional integrable systems

rt = rxx − 2r2
x

r − s + 2rxR

st = −sxx − 2s2
x

r − s + 2sxR

Ry = rxsy − rysx
(r − s)2

and

rt = ryy −
2r2
y

r − s + 2ryS

st = −syy −
2s2
y

r − s + 2syS

Sx = rysx − rxsy
(r − s)2

which have recently been discussed in [4] and are both equivalent to the Davey–Stewartson
equations. These equations are invariant under the transformation

r̃ = s s̃ = s − 1
sxy
sx sy
+ 1

r−s

if we define

R̃ = R +
(

ln
sy

sx

)
x

S̃ = S +
(

ln
sx

sy

)
y

.

Formulae forr̃ , s̃ coincide with (5) after introducing the notation

r = λ1 s = λ2 ∂1 = ∂x ∂2 = ∂y.
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In a similar way Laplace transformation (36) for the rotation coefficients

β̃12 = β12(β12β21− ∂1∂2 lnβ12)

β̃21 = 1

β12

arises as the symmetry of the Davey–Stewartson equations

iut = uxx + uyy − u(p + q)
−ivt = vxx + vyy − v(p + q)
px = 2(uv)y qy = 2∂x(uv)

which were shown in [15] to be invariant under the transformation

ũ = u(uv − (ln u)xy)
ṽ = 1

u

p̃ = p − 2(ln u)yy
q̃ = q − 2(ln u)xx.

Formulae forũ, ṽ coincide with (36) after introducing the notation

β12 = u β21 = v ∂1 = ∂x ∂2 = ∂y.

6. Geometric background

In this section we give a geometric interpretation of formulae (5) based on the
correspondence between systems of conservation laws and line congruences in the projective
space.

Let us consider a 2× 2 system (1) in Riemann invariants

R1
t = λ1(R)R1

x

R2
t = λ2(R)R2

x

and choose its conservative representation

u1
t = f 1

x

u2
t = f 2

x

(40)

whereu = (u1(R), u2(R)) are conserved densities of system (1) with the corresponding
fluxesf = (f 1(R), f 2(R)). We recall that the densities and the fluxes satisfy the equations

∂if = λi∂iu i = 1, 2.

Following [16], we associate with (40) a congruence of straight lines in the 3-space
E3(y0, y1, y3) defined by the formulae

y1 = u1y0− f 1

y2 = u2y0− f 2.
(41)

This correspondence was investigated in [16], where it was shown that all familiar
constructions in the theory of systems of conservation laws (40) have their natural geometric
counterpart in projective theory of congruences. Let us recall the definition of the Laplace
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transformation of congruence (41). Any congruence (41) has two focal surfaces with the
radius-vectorsr andR:

r =
(

λ1

λ1u1− f 1

λ1u2− f 2

)
R =

(
λ2

λ2u1− f 1

λ2u2− f 2

)
.

The curvesR2 = constant andR1 = constant are conjugate on both of the focal surfaces.
The lines of our congruence (41) are tangent to the curvesR2 = constant on the focal
surface with the radius-vectorr and can be represented parametrically as follows

y = r + t∂1r

so that equations (41) can be obtained by excluding parametert . The Laplace transformation
(in the directionR1) of congruence (41) is a congruence, formed by the tangents to the curves
R2 = constant on the second focal surfaceR:

y = R+ t∂1R

or, in the components,

y0 = λ2+ t∂1λ
2

y1 = λ2u1− f 1+ t (∂1λ
2u1+ (λ2− λ1)∂1u

1)

y2 = λ2u2− f 2+ t (∂1λ
2u2+ (λ2− λ1)∂1u

2).

Excluding t , we can rewrite these equations in the form

y1 = U1y0− F 1

y2 = U2y0− F 2

where

U1 = u1+ (λ
2− λ1)∂1u

1

∂1λ2
= u1− ∂1u

1

b

U2 = u2+ (λ
2− λ1)∂1u

2

∂1λ2
= u2− ∂1u

2

b

F 1 = f 1+ λ
2(λ2− λ1)∂1u

1

∂1λ2
= f 1− λ

2∂1u
1

b

F 2 = f 2+ λ
2(λ2− λ1)∂1u

2

∂1λ2
= f 2− λ

2∂1u
2

b

(we recall thata = ∂2λ
1

λ2−λ1 , b = ∂1λ
2

λ1−λ2 ). The system of conservation laws

U1
t = F 1

x

U2
t = F 2

x

(42)

is called the Laplace transform of system (40). In Riemann invariants the transformed
system assumes the form

R1
t = 31(R)R1

x

R2
t = 32(R)R2

x

(we point out that the transformed system (42) has the same Riemann invariants as (40)),
where the new characteristic velocities are given by formula (5):

31 = λ2

32 = λ2− b∂2λ
2

∂2b − ab = λ
2− 1

∂1∂2λ2

∂1λ2∂2λ2 + 1
λ1−λ2

.



6878 E V Ferapontov

We emphasize, that the Laplace transformation of the characteristic velocities does not
depend on the particular conservative representation (40) of the given system (1).

Acknowledgments

I would like to thank the participants of the seminar ‘Geometry and Mathematical Physics’
in the Moscow State University for fruitful discussions and N Kamran for sending me the
reprints of [13, 14]. I also take the opportunity to thank Y Nutku for the invitation to the
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